Physiology and molecular biology of petal senescence.

نویسندگان

  • Wouter G van Doorn
  • Ernst J Woltering
چکیده

Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence is controlled by ethylene or is independent of this hormone. EIN3-like (EIL) transcription factors are crucial in ethylene-regulated senescence. The presence of adequate sugar levels in the cell delays senescence and prevents an increase in the levels of EIL mRNA and the subsequent up-regulation of numerous senescence-associated genes. A range of other transcription factors and regulators are differentially expressed in ethylene-sensitive and ethylene-insensitive petal senescence. Ethylene-independent senescence is often delayed by cytokinins, but it is still unknown whether these are natural regulators. A role for caspase-like enzymes or metacaspases has as yet not been established in petal senescence, and a role for proteins released by organelles such as the mitochondrion has not been shown. The synthesis of sugars, amino acids, and fatty acids, and the degradation of nucleic acids, proteins, lipids, fatty acids, and cell wall components are discussed. It is claimed that there is not enough experimental support for the widely held view that a gradual increase in cell leakiness, resulting from gradual plasma membrane degradation, is an important event in petal senescence. Rather, rupture of the vacuolar membrane and subsequent rapid, complete degradation of the plasma membrane seems to occur. This review recommends that more detailed analysis be carried out at the level of cells and organelles rather than at that of whole petals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

Ethylene-induced gene expression in carnation petals : relationship to autocatalytic ethylene production and senescence.

Exposure of carnation (Dianthus caryophyllus L.) flowers to ethylene evokes the developmental program of petal senescence. The temporal relationship of several aspects of this developmental program following treatment with ethylene was investigated. Exposure of mature, presenescent flowers to 7.5 microliters per liter ethylene for at least 6 hours induced petal in-rolling and premature senescen...

متن کامل

InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory.

The onset and progression of petal senescence, which is a type of programmed cell death (PCD), are highly regulated. Genes showing changes in expression during petal senescence in Japanese morning glory (Ipomoea nil) were isolated and examined to elucidate their function in PCD. We show here that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japan...

متن کامل

Reversible inhibition of ethylene action and interruption of petal senescence in carnation flowers by norbornadiene.

The inhibitory effects of the cyclic olefin 2,5-norbornadiene (NBD) on ethylene action were tested in carnation (Dianthus caryophyllus L. cv White Sim) flowers. Treatment of flowers at anthesis with ethylene in the presence of 500 microliters per liter NBD increased the concentration of ethylene required to elicit a response (petal senescence), indicating that NBD behaves as a competitive inhib...

متن کامل

The Effect of Eight Weeks of Aerobic Exercise on the Expression of Senescence Proteins P53 and P16 in Pancreatic Tissue of Diabetic Mice

Background: Chronic hyperglycemia is associated with an increase in cellular damage due to oxidative stress and increases insulin resistance and also increases in p53 and p16 beta cells, leading to the induction of senescence in pancreatic insulin-secreting cells. The aim of this study was the effect of eight weeks of aerobic exercise on the expression of senescence proteins P53 and P16 in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 59 3  شماره 

صفحات  -

تاریخ انتشار 2008